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Abstract 

The design equations for both single-channel and multi- 

channel optimum least-squares ("Wiener") filters are derived 

and discussed. Specific examples of such filters are presented; 

for example, inverse filters, signal/noise ratio enhancement 

filters, prediction filters, and maximum-likelihood filters. 

The single-channel and multichannel Levinson recursion 

algorithms for solving the design equations are discussed. 
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Introductlog 

Levtnson (19^7) published an algorithm for recursively extending the length 

of a digital filter, optimum in the least mean-square-error sense, designed to 

change a given waveform into another desired waveform. The algorithm was extended 

to the multichannel input case by Robinson, and to the multl-dlmensional case 

by Wiggins (Simpson et al.. 1963). 

The general wave-shaping problem Includes as special cases the design of 

inverse filters, prediction. Interpolation, and smoothing filters, and the 

algorithm is required In the design of maximum-likelihood filters of various 

types (Kelly and Levin, 1964; Simpson et al.. 1963).  Good discussions of 

optimum filter design have been presented by Claerbout (1963) and Treltel and 

Robinson (1966). 

There are two advantages to using the recursion algorithm Instead of 

designing the full-length filter directly: first. In the computation of a 

alngle-channel filter of length L points, machine storage requirements are 

reduced from a multiple of L2 to a multiple of L words, and the number of 

arithmetical operations is reduced from a multiple of L3 to a multiple of L2. 

For the multichannel filter with N inputs, the storage reduction Is from 

N2L2 to N2L and the operational reduction Is from N3L3 to N2L2.  It was not 

generally practical to design multichannel filters before the extension of 

the single-channel algorithm. 
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The second advantage is that the mean-square error, the quantity one is 

■inlmlzlng, can easily be calculated at each step of the recursion. Since the 

error falls rapidly at first as the filter Is extended and then tends to level 

out, one can stop the process when the error falls to decrease significantly. 

This saves computation time not only during the filter design but also later 

when the filter is being applied to data. 

Previous statements of the recursion algorithm (Levlnson, 1947; Wiggins, 

1965; Wiggins and Robinson, 1965; Robinson, 1963; Treltel and Robinson, 1966), 

although adequate for programming purposes and as mathematical proofs that the 

recursion gives correct answers, do not seem to me to offer the reader very 

much insight into why the algorithm works. In addition, some of the published 

discussions of the multichannel algorithm contain errors which are misleading 

for the inexperienced reader. 

The purpose of this report is to present a simple, easily understood 

development and discussion of both the single-channel and the multichannel 

recursion algorithms. Program writeups and listings are appended. 

In order for this work to be self-contained, we begin with derivation 

and discussion of the digital filter design equations the recursion is intended 

to solve. 

SinRle-channel wave-shaping normal equations 

Given a digital time series containing T+l points yQ, yj,..., y-p we 

require a filter of length L+l points which does the best Job in the least 

mean-squ.i re-error sense of converting the inpur data series y  (we are 

entitled to regard the points yQt  y,,..., yT as the elements of a vector y) 

into some ottier defllrcd data series a with known elements dg, d^,..., ^•j^+i« 
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We denote the filter by f and the output of the filter operating on the Input 

data y by z: 

I 
J-0 VM k - 0, 1 T+L+l (1) 

Here and later we adopt the convention that all vectors are in a apace of, say, 

J dimensions, where J >> T+L, and that elements of the vector? are zero 

outside the range of explicit definition here. 

In matrix notation, (1) is 

i - Yf (2) 

or 

«2 

'T+L+l 

yo 

yT-l ... yl 

• • •    • • • 

The design criterion is minimization of the square of the length of the error 

vector 

^ - z - d (3) 
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ve wish to minimize 

i - |J|   - \> 
^  2   T+L+l 

-3|2 - I 
t-0 j-o z 3 - 

-   d. (A) 

The minimum value of E is attained if all the partial derivatives of E with 

respect to the f. , k - 0, 1,..., L, are zero: 

1!L 
3f. 3f. 

T+L+l 
I 
t-0 U'^-'e] 

or 

k - 0,1,....L   (5) 

(The quantity in brackets is the error vector, so (5) says that the error vector 

e Is orthogonal or normal to y; hence the name, normal equations.] We can 

write this set of equation« 

L     [ T+L+l 

J-O  J    t-0 
yt-kyt-j 

T+L+l 
J   yt.kdt  k-0.1 L  (6) 

t-0 

In matrix form this is 

T -►    Tt 
Y Yf - Yd C7) 
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th.it is 

yo ri 

yo 

J.   • • • 

yo 

(7) 

yo   yi 

'T+L+l 

(8) 

We can simplify these equations by Introducing the transient autocorrelation 

function 

V (9) 

where M Is the range of definition of y. Ve can define a vector r whose 

elements are given by (9). With the change of variables q ■ t-k, the quantity 

in brackets on the left side of (6) Is 
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T+L+l T+L+l-k 

t-o      J   q-0 
(10) 

The botton. limit on the second sum can be taken as rero, since yq - 0 for 

q < 0. Introducing the transient crosscorrelatlon function 

♦yd(9> 

M-s 

I \dt+8 
t-0 

(11) 

the right side of (6) can be written 

T+L+l 

I  y^t 
t-o 

T+L+l-q 

I 
q-0 

yqdt+k 
Bt k - 0. 1..... L     (12) 

■o that (6) Is 

L 

I 
J-o 'iVj ■ 8t k-0, 1,...* L (13) 

It Is easy to show that these definitions a*6 consistent with the matrix 

notation introduced above. We can define 

R - T'Y - rl   T0 

lL-l 

^2 

[ rL   Vl rL-2  * *'  r< 

(14) 
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80 that (8) and (13) can be written 

Rf - g (IS) 

Minimum error energy: 

The minimum value attained by the error energy I« obtained by substituting 

the solution of (15) into (4): if f satisfies Rf - g, that is, Y Y! " T d, 

and if the output is z - Yf, then 

^«r>    ■•   -»• T  -*   "♦    "♦T*    "♦T*   '♦T* 
E - e e - (d - z)     (d - z) - d d - 2z d  + t t (16) 

- d d + zz    -    2£ Y d 

- 3T3 + ^ - 2tTJ 

- J^ + Ä - 2lTRf 

- H + Ä - 2(Yl)TYl 

so 

E, -H-ft (17) 
min 

so that the energy in the error vector is simply the energy in the desired 

output minus the energy in the actual output. 

The error energy can be calculated without actually constructing the 

output z:  in (16) we can convert z z into z d instead of the other way 

around, and since 

VT-t  2TVTJ    .T-*- 
z d ■ f Y d - fg 

we have 

B.ln -n-vt »a) 



I 
-8- 

E. being a sum of squares, cannot be negative; nor can It be greater than 

-*f-* 
iPd by  (17),  so If we divide through  (18) by d d and define 

P - E/H - 1 - ££ (19) 

ve are assured that 

0 < P < 1 

so that P can be used as a measure of the performance of a filter f satisfying 

Rf - g; In particular, as the length of f Is extended, the performance can be 

evaluated at each step In the recursion (Treitel and Robinson, 1966). 

The inverse filter; 

Suppose the desired output dt Is specified to be unity at time t - s and 

tero everywhere else. If it were possible to achieve this desired output 

perfectly, we would have 

»t - J «,7^ ■ f*y " (0.0....,0,1,0 0) (20) 

and such a filter is called an inverse filter by virtue of the resemblance 

between (20) and the definition of an inverse: 

a 9 b - I 

where I is the identity with respect to the operator  $ . 

The right side of the normal equations (15) for the inverse filter is 

just the (s+l)' st column of Y . The right side of equation (8) shows that 

for L < a < T+l, g is an (L+l)-term segment of the input yt, in reverse 

order:  (y , y ,,....7 ,)• For 0 < s < L or T+l < s < T+L+l, g has 
'g  '8-1      S-L 

fewer than L+l nonzero tens. We see that for s • 0 and a - T+L+l, g has only 

mtmmmmmm* 
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one nonzero clement.  The former case 18 the zero-delay inverse filter, which 

sntIsfles 

0 

Rf (21) 

The value of yn enters these equations only as a scale factor, which does not 

affect the shape of the filter or of its output. 

The zero-lag inverse filter thus depends not at all on the actual waveform 

y (except trivially as a scale factor), but only on its autocorrelation r. 

Since the autocorrelation is symmetric — r. - r . — f does not depend on 

the phase spectrum of the input data. We might expec: that the phase response 

of the filter f depends only upon some intrinsic property of the autocorrelatioi, 

-»• 
and it does:  the phase spectrum of f is such that the total energy in the 

waveform f i    Jammed up as much toward the front of the waveform (toward f ) 

as is consistent with f satisfying (21). This concept of minimum enorgy 

delay or minimum phase is the subject of a considerable literature (Robinson, 

1954; Robinson and Treltel, 1965; Robinson, 1962). 

The performance factor P of an inverse filter depends drastically on the 

delay s at which the desired output Is to occur.  (Treitel and Robinson, 1966, 

show examples for which the performance factor is 0.005 for s-O, but 0.860 for 

s - 15). A recursion exists (Simpson et al.. 1963) which shifts the desired 

output lag s. This can be used to searca relatively inexpensively for the 

lag at which the performance factor can be maximized for given filter length. 



.,. . 

-10- 

The prediction filter: 

Suppose we request a desired output at time t consisting of the Input itself 

p time units ahead. This is an extrapolation problem of considerable practical 

Interest, for example, in economics and weather forecasting. 

The desired output is 

dt " yt+p 

Substituting this into (11) we have for the right-hand side vector of the 

normal equations 

T 

8k " I      7B
dB+V. 

s-0 

k-0, lf...* L 

so (13) becomes 

^n 
ysys+p  - r 

s-O     r     P 

ro rl 
r2 • • • "L 

rl 
ro rl • t • rL-l 

r2 rl 
ro • • • rL-2 

rL  rL-l rL-2 

r fo" "rP ' 

fi - Vi 
f2 V2 
• • • • • • 

L   fL. 
rp+L 

(22) 

The presence of a segment of the r vector on the right-hand side of (22) 

is interesting. A trivial prediction filter is that for p-0; in this case we 

obviously have I - (1,0,....0). i.e., 1    reproduces the input, as it was 
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told to do.  The next almplest prediction filter attempts to predict only one 

unit ahead In tlmo: 

r0   Ti r2  ... rL 

rl   r0    rl   •*• rL-l 

rz   ri rA  ... r L-2 

i rL   rL-l 
rL_2... ro 

fo ri 

fl *2 

h - *3 

• • • •  •  • 

fL rL+l 

The desired output la dt - yt+1. The actual output la 

(23) 

k-0 
(24) 

and the error Is 

et - dt - zt '  yt+l I     fkyt-V 
k-0 

(25) 

The form of the right-hand side of (25) suggests that we could define a 

prediction error filter to get et directly, as follows: 

h0- 1; h - -f.,    J - 1,2 L+l 

The prediction error filter Is thus one unit longer than the prediction 

filter, and Its output Is 

L+l 

t k-0   K c K 
(26) 
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whcre t+l In (25) has been replaced by t in (26). 

We can Inquire what normal equations the prediction error filter h 

satisfies: we write 

ro   ri rz * * rLf1 ho CO 

ri   ro ri •'  rL hi ci 

Tz       ri ro *' rL-l 
h2 

• • • 

■ C2 

• • • 

rL+l rL 
rL-l  ' 

TQ Vi CL+1 

. L   -1 U   J 

(27) 

where the c , J-0. L+l, are as yet unknown. 

Let us use the notation 

gl 

L+l 

ci 

CI. 

h, - 

Vl 

(28) 

Then (15) is 

Rf - g 

and (27) can be written 

r0  I 

8 

1 ^ •    • 

T 
8l h0 C0 
— — — — - • — *-- 

R 8. 
(29) 
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But hj - - f by definition. So we have 

I  t T 

 1  

Si   |   R 
(30) 

Multiplying this out, 

r0 ' 8l f - c, 

0,-0 

the last step following from (23). From the previous discussion on error 

energy, we know that g^ f is the energy in the predicted output (equation 18). 

The zero-lag autocorrelation is the energy in the input, so we have 

VT*  VT-»-  vr+ _ _ c0-r0-rz-yy-zz-E 

where E is the unpredictable energy. Thus the prediction error filter satisfies 

r0 

rl 

r2 

... r L+l 

... r. 

^L-l 

rL+l 
rL rL-l * 

1 

-fl 

• • • 

- 

1»                                 «" 

E 

0 

0 

• • • 

fL 
0 

(31) 

Except for the scale factor E, (31) is the same as the normal equations for 

the inverse filter (equation 21). An heuristic argument as to why this 

should be so was given by Claerbout (1963); a rigorous derivation was given 

by Robinson (1954). 
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The prediction error filter for apana greater than 1 is not so simple. 

For example, for p - 2, we have 

ro   H   r2 rL+2 

'L+l 

1 rL+2 rL+l rL 

k,                    «4 p 
1 c 

0 cl 

-fo 
H 

c2 

• • • •  •  • 

-fL 
cLf2 

■           — ■                     ■ 

Defining c2 ■ (c2, £}*•'• ^i^   ' 

(32) becomes 

«2 " (^»'s* * * * »'l/^ ' 

r                            1     -► T ' 
■     * 

TO     ri  :  g2 
i c0 

__" .—.  <■—    -mnm —       MB 

|                1      > T 
'l      '      r0      |__ «1 

0 - cl 

}* \ * \ * \ -1 «. 

Multiplying this out, we have 

T- 
^0 " «2 f - c( 

»"I " »I f " cl 

g2 - Rf - c2 - 0 

(32) 

(33) 

(34) 

(35) 

(36) 

and all this can be calculated fron f and r. It is easier to construct the 

predicted trace and subtract It from the input with the appropriate shift. 

Alternntlvcly, one can construct an approximation to the output of the 

prediction error filter for span two by filtering twice with a unit-span 

prediction error filter. 
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General characteristics of the wavc-shaptng filter: 

Returning to equations (1A) and (15), we notice that the filter does 

not actually depend on the waveform y but only on its autocorrelation 

function and crosscorrelation with the desired output. This fact is of 

central Importance in the analysis of stationary stochastic processes where 

the waveform Is a collection of random variables, whose correlation properties 

nevertheless do not change with time; hence the correlation functions can be 

measured using one sample of the noise, and the resulting filter will be 

valid for other samples of the noise. 

Notice also that the optimum filters of different length, say L and 

L+l, do not contain the same elements up through L terms; for example, the 

one-point filter is 

and the two-point filter is 

f, r 2 - r 2 r0   rl 

rogO " ngi 

rogi " rigo 

Th« Levinson recursion allows us to construct the filter of length 

L+l from the filter of length L, Since we know the one-point filter 

fg - g0/r0, ve can recursively construct a filter of any length. 

Notice that if g, = 0 (zero delay inverse), f is minimum delay, 

since r  is greater than r,. 
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The single-channel recursion algorithm 

The single-channel normal equations (15) were: 

rL   rL-l rL-2 

L-l 

^-2 

- •                  " 

f0 80 

fl «1 

f2 82 

•   • • •   •  • 

'i *L 
>•                 — L         J 

(15) 

R is an L+l by L+l matrix; to store it requires CL+D2 words, and to find 

I - R"1^ by Inverting R would require  (L+l)3 arithmetical operations. But 

R is a Toeplltz matrix, i.e., all the elements on a given diagonal are equal, so 

that there are really only L+l different elements in R. The Levlnson recursion 

cleverly capitalizes on this fact to calculate f directly from the two 

vectors (r0, r, rL) and (g0, gl gL) without ever storing the whole 

matrix R. The saving in arithmetical operations comes from the fact that 

extending the one-point filter to length L+l requires only a total number of 

arithmetical operations proportional to (L+l)2. 

The operation of the algorithm is most easily understood from a concrete 

example. We will take L - 2, and illustrate the extension from length 3 to 

length A. Using primes to denote the unknown elements of the new filter, we 

seek the solution f* of: 
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L 

f! 

'1 
f3 

»0 

«2 

«3 

(37) 

where we already know the solution f of: 

• • 

«0 So 

'l - Si 

'2 «2 

(38) 

We see the 3-by-3 R matrix of (38) In the upper left corner of the A-by-A 

»atrlx of (37), and the | of (38) in the upper part of the right-hand side 

of (37). This suggests trying Uo express f' in terms of f and some other 

unknown vector: 

»                    «i ■ — • 

n «0 »1 

*{ 
■ 

«I 
+ 

"i 

*i «2 •-J 

n 0 *{ 
. .          . m           m 

(39) 

The rsason for splitting off the unknown scalar y and making the indices on 

h* go backward will appear later. 
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We can 

does not: 

also split g into a part which depends on y   and a part which 

80 80 0 

81 81 
+ 

0 

82 82 
0 

83 rf v' 

(40) 

Now rlU v«. end Y are unknown, "rf" is a Fortran-like sytnbol for "r dot f". 

as will be seen later. 

From (40), we have 

V'T + rf - g, (41) 

Substituting (39) and (40) into (37). we have 

»0 »1 

I 
3 " fo' 'S" 

1 

Y 

'80' 0 

2 fl 
+ 

*i 
m 

8l 
+ 

0 

I 
f2 M 82 0 

0 fo 
m            • .bi. 

rf v« 
•    < 

v« can separate (42) into a set of equations which depend on Y' 

rl r0 r1 

r2 r, r0 

rs r2 rj 

3 ■"5' "O ' 

2 "1 
m 

0 

1 M 0 

0 .hi. 
v' 

(42) 

(43) 
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and a part which is independent of Y: 

3 

*                  « 
f0 80 

2 
fl 8l 

I 
f2 «2 

0 
0 rf 

(44) 

The top three equations of (44) are just (38) again.  The bottom equation Is 

k-0 

(45) 

Using (Al), we have 

Y - {g3 - rf)/v• 
(46) 

Now all we need to extend f to f' are v« and b'. But the remarkable 

symmetry of R allows to turn equation (43) upside down and inside out, and 

Identify it with (31), the equation defining an optimum unit-span prediction 

error filter - provided we have bo-1, which we will show we can always do. 

Then v' is Just the error energy (the symbol v having been chosen to connote 

variance).  The fact that (A3) is backward with respect to (31) is unimportant 

in the single-channel situation.  For the multichannel filters, we shall see 

that predicting backward In time is fundamentally different from predicting 

forward, the reason being that the crosscorrelation functions are not symmetric. 

Thus far we have seen that in order to extend the wave-shaping filter  f, 

all we need is a method for extending the backward prediction error filter b. 

We can anticipate that this will be a simpler task, since (31) Is so much 

simpler than (8). 
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At each step of the recursion we extend b to b', calculate v from 

(18), and then extend f to f' using (A6), (A5), and (39). Thus we turn 

our attention to the problem of extending b. 

Suppose we know b and v at this step of the recursion: 

(47) 

2 b2 0 

1 bl - 0 

0 «»0 
L       J 

V 

Filling out 1) with a zero to length A, substituting it into (A3), and using 

(A7), we have: 

0 

b2 

bi 

bo 

(48) 

ro  'l  '2  ra 

ri  r0 ri      r2 

r2  r!  ro  r! 

1 ra  rz T1      ro 

where e is yet unknown. We can rearrange (A8) as follows, because of Toeplitz 

symmetry of R: 

1 

e 

0 

0 

ro  r!  rz  ra 

ri  ro  ri  rz 

rz  ri l 

I ra  r2  r!  r0 

■ ■ »      • 

bo V 

bi 0 

bz 0 

0 e 

(49) 

Now suppose we multiply both sides of (A9) by a constant a (as yet unknown), 

add the result to (A8), and attempt to Identify the result with (A3): i 
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I 
(43) was: 

I 

0 

b2 

bl 

+ 

bo 

bl 

b2 

a ■ 

e 

0 

0 
+ 

V 

0 

0 

b0 0 1 
V e 

l 

• • -    • 

3 

2 

"5 
hi 

0 

0 

1 <-; 
" 

0 

0 *; v' 
3   '2   M 

The bottom equation of the a-dependent part of C50) detennlnea e: 

(50) 

I 
k-0 

rL-k+lbk ■ e 
(51) 

Comparison of the top element of the right-hand aide of (50) with the top 

element of the right-hand aide of (43) determines a: 

e + va - 0 

or 

- -e/v (52) 

Similar comparison of the bottom elements determines v': 

v* - v + ea - v - e2/v 

and so finally: 

(53) 

b; ' bk + abL-k 
k - 0,1,. ..^ (54) 
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Equation (5A) Is rather remarkable. Notice that It implies that b0 is 

never changed during the recursion process, so b always remains a unit-span 

prediction error operator, provided that we start with bg - 1. 

We now have everything necessary to extend f. 

Summary of single-channel recursion; 

Starting values: b0 - 1; f0 - g0/r0; v - r0. Then for L - 0,1,2,..., 

compute: 

L 

*•  e- J0  
rL-k+l

bk 

2.  o - -e/v 

'•  b,k " bk + obL-k       k " 0'L+1 

4.  v* ■ v + ae 

L 
5-  rf'L    rL-k+l

fk k-0 

6-   Y - (8T+1 " rO/V 

7.  «i " f
k 
+ YbL_k+1    k-O.L+1 

Notice that in order to construct a zero-delay inverse filter recursively, 

we need carry out only the first four steps. 
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Normal equations for the multichannel wave-shaping filter 

Suppose wc have N  Input channels y^t), 1 - 1. N, and M output channels 

B (t), J " 1,M, related to the inputc by: 

zAt)    -      I l       f..(a)  y.(t-8) J-1,M      (55) 
J 1-1   3=0   13 

so that each Input contributes to each output via the N-M filters fj. (s). 

Suppose also that we have a given set of desired output functions «MOi 

J-1,M. Then we seek the set of filter coefficients which minimizes the set 

of M error functions 

ITLiTX 

E. -   J   [zAt) -  d (t)l2        J - l.M (56; 

[We see from (56) that since the M outputs are decoupled as far as the 

design criterion is concerned, we could Just as well work with the singlo 

output channel case, and superimpose the results.] 

Substituting (55) into (56), we have 

E3 

T+L+l N 

I I 
t-0 i-i 

I     ^(s) y^t-s) - djCt)    J-1,M 
s-0 -di(t)] (57) 

The E are all minimized when the partial derivatives with respect to the 

filter coefficients all vanish:   3E /3f. (u) - 0 for m - 1,M; k - ltN; m  Km 

u - 0tL.  Writing this out, we have: 
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3F, T+L+l 
 5-- - 2 I   \     I,      ln    'l.<«>Tl<t-" - d.(t> J  \(t-u) * 0 

t-0  L 1-1 s-0 J 

k - 1,N; m - 1,M; u - O.L (58) 

which we can write: 

N   L T+L+l T+L+l 
I        I      flm

(8)   I        y1(t-8)yk(t-u) -   I        yk(t-u)d (t) 
1-1  8-0   im t-0    !       K t-0    *       m 

k - l.N; m - l.M; u - O.L (59) 

We can define correlation functions as In the single-channel case: 

T+L+l 

'..„^ "    ln y^K^ (60> 
t-0 

T+L+l 
.„„(,) - ^ rh<t)dn(t+,) («» 

From the cross-syntmetry of the crosscorrelatlon function, we have 

'h-''' - W-") (62> 

Thus we can write (59): 

N   L k-l,N 

I        I      £in.(9) rlk(8-u) " 8kni(u)       B-1'M       (63) 
1-1 s-O  im u-0fL 
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We can use (62) to make this set of equations resemble a matrix equation: 

N   L 
V 
L 

1-1 s-'O I        I       rkl(u-s)flm(8)  - ^M 
k-l,N 
m-l.M 
u-0,L 

(64) 

As an Illustration, the set of equations for N-2, L-2, M-2, Is: 

rii(O) r,2(0) 

r21(0) r22(0) 

rn(-l) ri2(-l) | tn(-2)  r12(-2) 

'11 Ü) '12(1) 

r2l(l) r22(l) 

r2i(-l) r22(-l) '21 (-2) r22(-2) 

rn(0) r12(0) 

r21(0) r22(0) 

'11 (2) r12(2) 'lid) r,2(l) 

'11(-1) '12(-1) 

'21("I) '22("I) 

'21 (2) r22(2) I r21(l) r22(l) 

'U (0) r12(0) 

'21(0) r22(0) 

fll(0) f12(0) 

f2l(0) f22(0) 

fll(l) fi2(l) 

^21(1) «22(1) 

fll(2) fi2(2) 

hlW   ^22(2) 

gn(0) gi2(0) 

g2l(0> g22(0) 

gll(l) 812(1) 

g2i(l) g22(l) 

gll(2) gi2(2) 

g2l(2) g22(2) 

(65) 

The dashed partition lines we have drawn In (65) suggest a matrix formulation: 

define 

'll(s)  r12(s)  ... r^s) 

'21(s) '22(8)  ••• '2N(
8) 

LrN1(s) rN2(s)  ... r^OO 

(66) 

fll(8)  f12(8)   ...  f^Cs) 

f2l(9)  f22(8)  ...  f2M(8) 

W8)   fN7<a)   •••   ^(9) N2 NM' 

(67) 
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8. 

821(8) g22(8)  ••* 82M^8^ 

I 8N1(8) 8N2(8) »NM(8) 

(68) 

We can now define supennatrices (matrices whose elements are themselves matrices): 

R - 

r0 r.! r.2 -L 

■ l    'o  '-!  ... r_L+1 

r2 rl  ro   *•• r-L+2 

rL Vl rL-2 . r. 

T  T 
ro rl r2 rL 

rl r0 
T 

rl ^ 

r2 rl 
ro -u 

rL rL- .lrL- •2... 
ro 

(69) 

F - G - 

80 

81 

82 

• • • 

(70) 

From (62> we see that R Is syometrlc and block-Toeplltz. The normal 

aquations (64) become simply: 

RF - G (71) 
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where R Is an L-by-L matrix whose elements are each N-by-N matrices; 

F and G are both column vectors each of whose elements Is an N-by-M matrix. 

Recursion for the Multichannel filter 

The Levlnson-Roblnson recursion for the multichannel waveshaplng filter 

goes as above, with the following exceptions: 

1. Elements of the normal equatioiw are matrices, not scalara. 

2. Since crosscorrelatlons are not symmetric, auperdiagonal element» 

T 
of R must be written r.  or r . , rather than r. . 

3. Since matrices do not necessarily commute, we must be careful 

about the order of elements in a product. 

A. For reciprocals we need to use Inverses. 

5. Most important, the backward multichannel prediction error operator 

is not simply the time reverse of the forward prediction error 

operator. We find that instead of one auxiliary sequence b , we 

will need two, a and b, which correspond to the forward and back- 

ward prediction error operators.  Instead of the single variance 

and error terms v and e, we will need a variance and an error 

term for both the forward and the backward prediction error operator.*. 

As before, we illustrate the recursion for L ■ 2. We seek the solution 

f' of: 
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T  T T 
ro rl    r2 r,, 

T T 
n  r0 ti r2 

r2  t!  r0 Tx 

Ti    Tz    ri    ro 

*•     • *  * 

n so 

fi 
m 

81 

n 82 

n g3 

(72) 

where we know the solution f of: 

f0 80 

fl - 8l 

h 82 
,    , .     , 

(73) 

and where now the r's, fs, and g'B are given by (69) and (70) 

As before, we express C  in terms of f and an unknown correction: 

'j' V V 
fi m «I + •>! 

'1 f2 <•! 

t\ 0 bj 
, , —        _ 

(7A) 

where now Y and the elements of f and f' are N-by-M matrices, and the 

elements of b' are N-by-N matrices. 

We split g into a part which depends on y and a part which does not: 

■   -" " •          M 

80 80 
0 

8i - 8l + 0 

82 82 0 

83 rf vb' 
, b ,      m 

(75) 
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where rf Is an N-by-M matrix and vb' la an N-by-N -natrix. "vb" connotes 

"variance on the bottom"; we will later need a variance on the top, error 

on the top, and error on the bottom. 

The bottom equation In (75) gives 

g3 - rf + vb'y 

so we have 

Y - (vb1)"1^ - rf) (76) 

We now substitute (74) and (75) Into (72): 

I 

'0  M  ,r2  '3 

T  T 
ri ro n r2 

r2 rl r,, T1 

r3 r2 rl r0 

f 

fi 

*    • 

b^ 

4 
«i 

0 

+ 

< ■ > 

The Y-dependent part of (77) Is 

V 

80 

81 

0 

0 
Y • + 

f 

82 0 

> 

rf 

*        4 

vb* 

T  T  T 
rg ti    r2 r,, 

ri ro rl 

r2 T1    r0 T1 

ri r2 rl r0 

"     " m 

b5 0 

K m 
0 

bl 0 

K vb' 
m     m _ 

and the part which Is Independent of 

L 

r0 rl r2 r3 

rl 
ro A T 

r2 

r2 rl 
ro 

T 
rl 

r3 r2 ri r0 

>nt of Y Is: 
m 

f0 80 

fl m 8l 

f2 82 

0 rf 
t                   t . 

(7(3) 

(79) 

(77) 
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The top three equations of (79) are Just (73) again. The bottom equation of 

(79/ determines rf: 

k-=0 
L-k+l k 

Now all we need to calculate f  from t    are vb» and b'. 

Since the elements of R now are matrices containing crosscorrelatlons, 

we cannot rearrange (75) In the same way we got (A9) from (48).  It turns out 

that to pull the same trick as was used In forming (50) and comparing It to 

(43), we must define a forward prediction error operator a', which satisfies: 

T  T  T 
ro M T2    rs 

T  T 
ri ro rl r2 

T 
r, r, r0 T1 

T3    r2 rl    r0 

f a5 

«1 

J  N 

vt' 

0 

0 

0 

(81) 

where vt' ^ vb'.  (81) will play the same role equation (£9) did In the 

single-channel case. Thus two auxiliary operators are required for the recursion 

procedure, whereas the single-channel case required only one. 

Suppose, then, that at this stage a«, b', vt', and vb' are unknown, but 

that we know vt and vb, and a and b which satisfy: 

T  T 
ro *l    r2 

r2 rl r0 

r0 rl r2 

rl  r0  rl 

r2 T1    r0 

■              * *          * 

«0 Vt 

al 
■ 0 

a2 0 

(82) 

0 

0 

vb 

(83) 
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We now fill out  a with a zero matrix and substitute Into (81); using (82) 

we have: 
r 

rl r0 rl r2 

^2 ri r0 
T 

^3 ^2 ri ^0 

• *              ' 

a0 Vt 

al 
m 

0 

«2 0 

0 eb 
J • 

(8A) 

where eb  Is an unknown N-byN matrix. Similarly extending b, substituting 

Into (78), and using (83), we have: 

r0  M L2     l3 

T  T 
ri  r0 r! t2 

r3  rZ  rl  r0 

* * 

0 et 

b2 m 
0 

bl 0 

b0 vb 
»      m »                a 

(85) 

where et Is an unknown N-by-N matrix. 

Now we postmultlply (84) by an unknown N-by-N matrix a, postmultlply (85) 

by an unknown N-by-N matrix 6, an' add: 

T  T  T 
i 

T  T 
r2 

r2 rj r0 rf 

r0 rl r2 r3 

rl r0 r, r2 

r3 r2 T1    r0 

- i a0 

f 

0 

1 

vt et 

al a + b2 6 . 0 
a + 

0 

a2 
bl 

/ 

0 0 

\ 

0 b0 eb vb 

ß 

(86) 

The top equation of the ß-dependent part of (86) determines et: 

et - J 
k=0 

rL-k+l bk 
(87) 
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ind the biittom equal ion of the «-dependent part of (86) dctormlnes cb: 

eb 
k-0 

L-k+l 
(88) 

Now let us postmultlply (78) by ß, postmultlply (81) by o, and add: 

T  T T 
r0  rl xl r3 

T T 
ri  ry ri r? 

L 
r2  ri  r0  ri 

r3  r2  rl  r0 

/ 

«0 

a! 

1 

•5 

•         - 

\ 

vt' 

0 

0 

0 

\ 

6 
' 0 

a + 
0 

K , 
0 vb» 

-                a / . m                m J    (89) 

We now Identify (89) with (86).  To do this, It turns out to be necessary to 

select 

(vt)a -f et - 0 

or 

and 

or 

a - -(vt)"1 et 

(vb)ß + eb - 0 

8 - - (vb)"1 eb 

(90) 

(91) 

Substituting (90) and (91) Into (86), we have 

/ r 

R 

a0 0 

ai b2 

a + 
a2 bl 

0 bo 

-et (et)ß 

0 
+ 

0 

0 0 

(eb)a -eb 

(92) 
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We can get rid of the -et and the -eb simply by adding (84) and (85) to (92): 

ao 0 

al + 
b? 

a2 bl 

0 b0 

B + 

0 

b. 

ao 

ai 

a2 

0 

Now our Ident'f IcaMon is complete If we put: 

rt'  - vt + (et)e 

vt + (et)0 

0 

0 

vb + (eb)a 

(93) 

vb'  - vb + (eb)a 

(94) 

(95) 

*i.    ■ ak + bL-k+l
0 

bi " bk + aL-k+i
a 

k - 0,L 

k - 0,L 

(96) 

(97) 

A time-saver: 

The fact that the matrix et  is always the transpose of the matrix eb was 

proved by J. P. Burg in 1962 (personal communication) and much more simply by 

D. W. McCowan (personal communication) in 1966 as follows: 

T  T  T 
Prcmultiplying (84) by (0, b2, bi, b0), we have 

(0, bi. bf, bj)  R 

•0 

«2 

0 

T   T   T 
- (0, bj, b}, bj) 

vt 

0 

0 

eb 

- eb (98) 
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the last equality following from the fact that we have b0 - I throughout 

T  T  T 
the recursion process.  Similarly premultlplying (85) by (a0, aj, a2, 0) we 

have 

[• 
(a0, «p a2, 0)  R 

/- T  T  T n» - (a0, alt a2, 0) 

I 

et 

0 

0 

vb 

et (99) 

1 
the last equality following from the fact that we have a0 - I throughout the 

recursion process.  Since R - RT, It follows that the left side of (98) Is the 

transpose of the left side of (99), and hence that 

et - eb (100) 

-1 

Summary of the multichannel recursion; 

Starting values:  a0 - b0 - I; vt - vb - rQ, f0 - r0
Agfl. Then for L - 0,1, 

compute: 

L 

2. eb et 

-1 
3. a - -(vt)  et 

4. ß - -(vb)"1 eb 

5- •k " ^^L-k+l0 k-0,L 

6. b; - bk+aL.k+ia k-0,L 
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7. vt' - vt + (et)ß 

8. vb' 

9. rf 

- vb + (eb)a 

L 

■   I 
k-0 
L rL-k+lfk 

10. y    - (vb') "(g^ - rf) 

"•  fi " fk + bL-k+l
Y k - 0,L 

Some special cases of multichannel filters 

Multichannel prediction filter;  This predicts the Input channels, making use 

of the crosscorrelation between channels. For examples, see Claerbout (196A). 

We take M ■ N, and 

d (t) " YjCt + P) 

where p Is the prediction span. The normal equations are: 

«0 r 
P 

«I 

1 
. 

Vi 
• • » • •  • 

fL rp+L 

Array sum prediction; 

This predicts the array sum. For a single output. 

1  R 

d(t) - ^ I      y^t + p) 
1-1 



-36- 

where p is the prediction span.  We can predict the array sum at several 

different spans simultaneously: 

where p , j-l,M, are a set of M different prediction spans. 

The right-hand side contains matrices g , a - 0,L: 

1  H 

Spatial interpolation: We take as input N-l of the N Input channels, and 

as desired output the remaining input channel. The normal equation matrix 

is L'(N-l)-by-L*(N-l), and the right-hand side contains matrices g , 8-0,1., 

where 

(88>l - riN(8) 

The frequency spectrum of the interpolation error output, formed by subtracting 

the N'th channel from the interpolation filter output, can be used to determine 

the spatial coherence of the data (Flinn and McCowan, 1967). 

Equalization:  The "equalization" filter simply attempts to convert each Input 

trace to the array sum, and hence is identical to the N-output array sum 

predictor at zero prediction span. 

The equalization error output is a measure of the variability of the 

waveform across the array (for an example, see Backus, 1966). 

Signal-to-nolse r.itto enhancement;  Suppose that the input channels consist 

of signal mixed with noise, and we wish the output channels to contain only 
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the signal.  This situation can be handled within the framework we have 

outlined above. 

The Inputs are: 

y ̂t)  - n1(t) + s^t)      1 - 1,N (101) 

where n (t) represents the noise and s.Ct) the signal; we assume that the two 

have different correlation properties across the array.  The desired outputs 

are: 

d (t) - SjCt)        J - 1,N (102) 

We may ask for fewer output channels in order to get a more effective 

estimate of the signal.  For example, if the signal is a wave travelling 

across the array, we might ssk only for the time-shifted array sum: 

d(t) - i I      s^t  - c^ (103) 

where c. is the time delay appropriate to the i'th channel. 

The normal equations are set up and solved as before. Frequently we 

measure the noise correlation functions and use a theoretical model for the 

noise.  In this case we have an adjustable parameter in (101), which becomes: 

y1(t) - n^t) + As^t)       i - l.N (101a) 

where X determines the signal-to-nolse ratio. If the actual inputs have a 

different X than that for which the filters were designed, the performance 

is degraded. 



-38- 

Ttuw^itjmum Itnc.ir filter with const r.H n I s 

Tlu. pr.'vlous fllt.rs were designed using no criterion other thnn the 

.fdclencv of converting one waveform Into another.  In some cnte*. however, 

U Is doslfithle to Impose constraints on the filter. 

As a simple example of the single-channel filter with a constraint, we 

consider the nuxlmum output energy filter (Claerbout, 1961). The design 

criterion Is simply that when the input is a certain waveform x(t). the 

energy In the output should be as large a«, possible.  Obviously ao.ne sort of 

constraint Is needed to keep the filter coefflclenta finite. We can choose 

to require that the energy In the filter be unity: 

J   f2(t) - 1 (104) 

t-0 

The output energy Is: 

TfL+1 

E -   I    *?(0 
t-0 

T+L+l L 
a 

I I      f(t- r) x(t) 
t-0 T-0 , 

(105) 

Using a Lagrange multiplier, we seek to maximize 

Q - E + > 1 - I  f2(t) 
t-0 

(106) 

Using the vector and matrix notation set up earlier (equations 2 and 2a), 

we have: 
Q - Z1 Z + X (1 - fl f] 

- (Yf)T Yf + X (1 - fl fl 

fVYf + X (1 - fl fl 
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Uslng (14), 

Q . ? Rf + X [1 - fT f] (107) 

Now 3Q/3X  = 0 gives us the constraint, and 3Q/8fj - 0 gi^es: 

23- - Rf - Xf - 0 

"I 

or   Rf - Xf (108) 

which is a simple eigenvalue equation.  We see that X is the largest eigenvalue 

of the R matrix, and f is the corresponding eigenvector.  If we had chosen 

to minimize the output energy when the input is x(t), we would find the smallest 

eigenvalue of R and the corresponding eigenvector. 

The actual output energy for this filter is: 

E-zz-pRf- X f1 f - A 

so that the eigenvalue is the output energy. 

-♦•X •♦ 
We could have arrived at equation (108) by arguing that ma::lmizlng z z 

subject to the constraint f1 f - 1 is equivalent to maximizing the ratio 

T "    f  RI (109) 
X - 

r. £ f  f 

In a slightly more complicated version of this filter, we not only ask 

that the output be as large as possible (in the energy sense) when x(t) is the 

input, but also that the output be as small as possible when some other 

waveform w(t) is input. This is equivalent to maximizing the ratio 

vr -> 
x -  -=~— (110) 

lT wT wl 
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whero W Is a matrix formed from w(t) In the same way that Y was formed from 

y(t)--sce equation (2a) 

\ writing the autocorrelation matrix of W as P - WTWt (HO) becomes 

f  (Rf + \?h -  0 

Rf+  XPT  -  0 W 

which is a generalized eigenvalue problem.  (Ill) can alwaya be aolved, since 

correlation matrices are non-negative definite.  If L is not too large, we 

can covert (111) into (108) by premultiplying by P  : 

(P^RU + Xf - 0 (112) 

The maximum-likelihood filter; 

The maximum-likelihood or minimum-variance filter (the two terms are 

synonymous if the input is a Gaussian random process) was designed by Levin 

(Kelly and Levin, 1965).  It is an example of a multichannel filter with a 

constraint. 

We assume a single output channel, and ask that the energy in It be as 

small as possible, i.e., we wish to minimize 

E.zTz -   I        *2(t) (113) 
t-0 

We obviously need a constraint to keep the filter coefficients from turning 

out to be zero.  Levin suggested a linear constraint based on prior knowledge 

of the nature of the input.  In Levin's case the input channels consisted of 

signal and noise, but the signal was known to occur simultaneously on all the 
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rhannols  wltli   the   same  waveform and  amplitude; 

yf(t)    =    n^t)    +    8(t) i    -    l.N dl*) 

Levin's constraint was that the sum (across channels) of the filter coefficients 

should be a single spike at t = 0: 

I      t At)    9    h(t) = (1,0,0,. .,0) (US) 
1-1 

Using this constraint, the output is: 

Zit)   -   I    I        U (t-T)  f^T) 
i-1  T=0 

N   L N   L 

or 

-   Y     1   Mt - T)  f.(T)  +   I I      B(t-T)  f (T) 
lil T=0  

1        1      i-1 t-0 

(t) - I        I      n (t - T) f^x) + N s(t) (116) 
1-1  T«0 

Thus the effect of minimizing the power In the output by varying the filter 

coefficients, under the constraint (115), is to reduce the first term on 

the right side of (116) relative to the second term (since the second term 

does not depend on the filter coefficients at all)--i.e., the effect is to 

Increase the slgnal-to-notse ratio.  Kelly and Levin showed that the output 

signal is unbiased. I.e., that the signal comes through undistorted.  The 

filter can, of course, be designed so that the output signal arrives with 

anv desired delay, I.e., the right side of (115) might be 
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h(t) - 0,0...,0,1,0,... 

Actunlly, nny w.iv.-form h(t) cou'd be used as a constraint, e.g., the fmimlnc 

response of some desirable bandpass prcfilter could be used as li(t), and this 

would save doing the prrfllterlng. It will be apparent later that there are 

compensating advantages in using an h(t) which has a single nonroro element. 

The normal equations for the maximum-likelihood filter are considerably 

More implicated than in the case of the wave-shaping filter. Using Lagrange 

Multipliers, the quantity we minimize is: 

"" 2 
T+L+l 

Q-  I 
t-o 

N    L 
I   I yAt-nU AB) 
1-1  s-O  1 

L 

v=»0 

N 
\     tAv) -  h(v) 
1-1  x 

(117) 

where we have split off a factor ot' (-2) from the Lagrange multipliers for 

later convenience. 

Writing out 3Q/3fk(u) - 0, k-l,N; u-0,L, gives: 

m+1  N    L 
I   I       I    y^t-t) f^s) yk(t-u) -   xu 
t-0   1-1   B-0 

(118) 

aQ/3V - 0, u-0,L, gives: 

1-1 1 
- h(u) (119) 
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Uslng (60) and (62), wc can write (118) as 

N    L 
I I  rkI(s-u)  f^s) 

i=l  s-0 
u - 0,L (120) 

We define  R and F as In (69) and (70), as well as: 

H - 

• 

h(0) 

h(l) 

• • • 

h(L) 
, 

(121) 

and a summing matrix 
^— N  _+ •* N   —^ t • ■ - N —%. 

1   1 ...     1 0 0    ...    0 0 • • • 0 0 0 ...     0 

sT. 
0    0 ...     0 1 

•   •   • 

1   ...   1 0 

•  • • 

• • • 0 

•  • • 

0 

• • • 

0 

■   ■   • 

...    0 

0 0 ...  0 0 0 ... 0 0 ...  0 1 1  ... 0 I 
(122) 

an L-by-N-L matrix, each row of which contains N adjacent ones distributed 

as shown. S can be thought of as a stretched unit matrix. Using (122), we 

can write (119) as: 

T S F - H (123) 

and we can write (120) as 

RF - SA (124) 
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Wc need to solve (123) and (124) for F. Observe flrgt that 

STS - NI (125> 

where  1 is the Identity matrix. Starting with (123). we have: 

T 
S F ■> H 

STR"1RF    -    H 

STR"1SSTRF    -    NH 

STRF = N(STR"1S)'1H 

STRF -  STS(STR"1S)'1H 

which Is satisfied  If 

F - K'hish'hy'h (126) 

This can be abbreviated 

F - PCS1?)'1!! (127) 

where        p . R-ls (128) 

Notice that P is a sort of optimum multichannel filter in its own right, 

since it Is a solution of the normal equations R" - S.  Because of this we 

can compute P using the multichannel recursion, and form F by selecting 

the j'th column of PCS1?)"1, where the single nonzero element of H is the 

j'th element. 

Using (126), the output energy is: 
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E - r" z = (YF)TYF - MHT(STR"1S)"1H (129) 

When H contains only one nonzero element (say the J'th), the output error 

T -1  -1 
Is thus  N  times the J'th diagonal element of (S R S)  , so we can compute 

the filter performance without actually calculating the output. 
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